TITION TO NI						
UUCMS. No.						
0001110.110.						

B.M.S. COLLEGE FOR WOMEN BENGALURU – 560004

I SEMESTER END EXAMINATION-APRIL - 2024

M.Sc. CHEMISTRY-PHYSICAL CHEMISTRY-I (CBCS Scheme-F+R)

Course Code: MCH103T QP Code: 11009
Duration: 3 Hours Max. Marks: 70

Instruction: Answer Question No.1 and any FIVE of the remaining.

1. Answer any TEN questions

 $(2 \times 10 = 20)$

- a) Define the operators ∇ and ∇^2 .
- b) Show that Harmiltonian operator is Hermitian provided that the wave function is well behaved.
- c) Give the solution for the Schrodinger wave equation for a particle in 3D box.
- d) What is quantum mechanical tunneling?
- e) Which of the following is the eigen function of the operator d^2/dx^2 (i) $6\cos 4x$ (ii) $5x^2$
- f) Explain the term symbol with an example.
- g) Calculate the steric factor for a reaction having the $k = 3.22 \times 10^{-2} \text{ s}^{-1}$ with the Ea= 290 kJmol⁻¹ and the collision number 0.325 x10¹⁴ at 298 K.
- h) Mention the limitation of the collision theory.
- i) When water is subjected to temperature-jump method, the relaxation time to return to the equilibrium is 60µs. Calculate rate constants for the forward and reverse reaction.
- j) Give BET adsorption equation and explain the terms involved in it.
- k) Represent the Lineweaver-Burk plot and explain its significance.
- 1) Mention the differences between thermal and photochemical reactions.
- 2. a) Set up and solve Schrondinger equation for a rigid rotator.
 - b) Formulate the time- independent Schrondinger equation.

(5+5=10)

BMSCW LIBRARY

- **3**. a) Give quantum mechanical interpretation of Pauli's exclusion principle.
 - b) Apply variation method for a particle in a one-dimensional box.

(5+5=10)

- 4. a) Discuss the kinetics and mechanism of photochemical reaction of hydrogen and chlorine.
 - b) Outline flash photolysis technique in the study of rapid reactions.

(5+5=10)

- 5. a) Discuss the Lindemann's theory of unimolecular reactions and mention its limitations.
 - b) Derive Gibbs adsorption isotherm equation.

(6+4=10)

- **6**. a) Apply perturbation theory to He like atom and find its solution.
 - b) Deduce the rate expression for the influence of primary salt on the rate of reaction.

(5+5=10)

- 7. a) Represent the total wave functions for the 1s, 2p and 3s orbitals of hydrogen atom.
 - b) Obtain Laplace equation for pressure difference of curved surface.
 - c) What are radial angular distribution functions? Mention their significance.

(4+3+3=10)

- 8. a) Write a note on mechanical adsorption
 - b) Write the Slater determinant wave function for the ground state of Li atom and show that the configuration 1s³ is not valid.
 - c) Explain the effect of inhibitor on the enzyme catalyzed reaction.

(4+3+3=10)
